Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,5-Dimethylanilinium chloride monohydrate

Wajda Smirani* and Mohamed Rzaigui

Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021
Zarzouna, Bizerte, Tunisia
Correspondence e-mail: wajda_sta@yahoo.fr

Received 4 December 2008; accepted 6 December 2008

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$;
R factor $=0.028 ; w R$ factor $=0.081$; data-to-parameter ratio $=11.4$.

In the title compound, $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, the crystal packing is influenced by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, resulting in a two-dimensional network propagating parallel to (001).

Related literature

For related literature, see: Aloui et al. (2006); Masse et al. (1993); Blessing (1986).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=175.65$
Monoclinic, $P 2_{1}$
$a=7.515$ (4) \AA
$b=7.441$ (3) \AA
$c=9.019$ (2) \AA
$\beta=102.87(3)^{\circ}$

Data collection

Enraf-Nonius TurboCAD-4 diffractometer
Absorption correction: none
2058 measured reflections
1260 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.081$
$S=1.10$
1260 reflections
111 parameters
1 restraint

1166 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
2 standard reflections frequency: 120 min intensity decay: 5%

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
unique data only
Flack parameter: 0.17 (9)

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 30 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.81(4)$	$2.37(4)$	$3.168(3)$	$171(4)$
$\mathrm{O} 1-\mathrm{H} 31 \cdots \mathrm{Cl} 1$	$0.78(4)$	$2.44(4)$	$3.219(3)$	$174(5)$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots 1^{\text {ii }}$	0.89	1.82	$2.705(4)$	171
N1-H1B $\cdots \mathrm{Cl}^{\text {iii }}$	0.89	2.29	$3.167(2)$	169
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl}^{\text {iv }}$	0.89	2.30	$3.189(3)$	173
Symmetry codes:	(i) $-x+1, y+\frac{1}{2},-z+1 ;$	(ii)	$-x+1, y+\frac{1}{2},-z+2 ;$	(iii)
$-x+2, y+\frac{1}{2},-z+2 ;$ (iv) $x, y, z+1$.				

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: $\operatorname{Win} G X$ publication routines (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2876).

References

Aloui, Z., Abid, S. \& Rzaigui, M. (2006). Anal. Sci. (Japan), 22, x201-x202. Blessing, R. H. (1986). Acta Cryst. B42, 613-621.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Masse, R., Bagieu-Beucher, M., Pecault, J., Levy, J. P. \& Zyss, J. (1993). Nonlin. Opt. 5, 413-423.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o83 [doi:10.1107/S1600536808041287]

2,5-Dimethylanilinium chloride monohydrate

W. Smirani and M. Rzaigui

Comment

The preparation of inorganic anion and organic cation salts continues to be a focus area in chemistry and material science because of their abilities to combine the properties of organic and inorganic compounds within one single molecular scale, so as to exhibit some interesting crystal structure and some special properties, such as second-order nonlinear optical response, magnetism, luminescence, and even multifunctional properties (Masse et al., 1993). It is therefore vital to design and synthesize novel salts with inorganic anions and organic cations so as to explore their various properties. In this context, we report the synthesis and the crystal structure of a the title compound, (I), (Fig. 1). The crystal packing can be described as a typical layered organization. A projection of such a layer shows that the Cl^{-}anions are linked to the water molecules by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds to form infinite corrugated chains along the b direction (Fig. 2). These chains are themselves connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds originating from $\mathrm{NH}_{3}{ }^{+}$groups, so as to built inorganic layers spreading around the (a, b) plane. The 2,5-xylidinium cations are anchored onto the successive inorganic layers via hydrogen bonds and electrostatic interactions, to compensate their negative charges.

The examination of the organic cation shows that the values of the $\mathrm{N}-\mathrm{C}, \mathrm{C}-\mathrm{C}$ distances and $\mathrm{N}-\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{C}-\mathrm{C}$ angles range from 1.376 (3) to 1.503 (3) \AA and 115.72 (19) to $122.80(19)^{\circ}$, respectively. These values show no significant difference from those obtained in other organic materials associated with the same organic groups (Aloui et al., 2006).

In this structure, the water molecule play a very important role in the cohesion of the various groups. It participates with the organic cation and chloride anion in an H -bonding scheme of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ interactions in the asymmetrical unit. Among these five H -bonds, only one could be considered to be strong according to the well known criterion of Blessing and Brown: $\mathrm{N} \cdots \mathrm{O}=2.705$ (4) \AA (Blessing, 1986). The four remaining hydrogen bonds are relatively weak, and their donor \cdots acceptor distances vary from 3.167 (2) to 3.219 (3) Å. Thus, these different interactions (hydrogen bonds, Van der Waals, and electrostatic) form a stable three-dimensional network.

Experimental

The title compound was prepared by slow addition, at room temperature, of an aqueous hydrochloric acid solution to an alcoholic solution of 2,5 -xylidine in a 1:1 molar ratio. A crystalline precipitate was formed. After dissolution by adding $\mathrm{H}_{2} \mathrm{O}$, the solution was slowly evaporated at room temperature over several days resulting in the formation of transparent plates of (I).

Refinement

The water H atoms were located in a difference map and freely refined. The other H atoms were positioned geometrically $(\mathrm{N}-\mathrm{H}=0.89, \mathrm{C}-\mathrm{H}=0.93-0.96 \AA)$ and refined as riding with $U_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$ or $1.5 \mathrm{U}_{\mathrm{eq}}($ methyl C $)$.

supplementary materials

Figures

Fig. 1. View of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Fig. 2. A view of the atomic arrangement of the title compound along the b axis with H bonds shown as dashed lines.

2,5-Dimethylanilinium chloride monohydrate

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=175.65$
Monoclinic, $P 2_{1}$
Hall symbol: P 2yb
$a=7.515$ (4) \AA
$b=7.441$ (3) \AA
$c=9.019(2) \AA$
$\beta=102.87(3)^{\circ}$
$V=491.7(4) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& F_{000}=188 \\
& D_{\mathrm{x}}=1.187 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Mo} \mathrm{~K} \mathrm{\alpha} \mathrm{radiation} \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 25 \text { reflections } \\
& \theta=9.0-10.8^{\circ} \\
& \mu=0.34 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.50 \times 0.30 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{\max }=28.0^{\circ} \\
& \theta_{\min }=2.3^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=0 \rightarrow 9 \\
& l=-5 \rightarrow 11 \\
& 2 \text { standard reflections } \\
& \text { every } 120 \text { min } \\
& \text { intensity decay: } 5 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.081$
$S=1.10$
1260 reflections
111 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Hydrogen site location: difmap and geom
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0515 P)^{2}+0.0061 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.20$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.13$ e \AA^{-3}
Extinction correction: none
Absolute structure: Flack (1983), unique data only
Flack parameter: 0.17 (9)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
H30	$0.343(5)$	$0.410(6)$	$0.541(3)$	$0.068(9)^{*}$
H31	$0.467(5)$	$0.287(7)$	$0.548(4)$	$0.101(13)^{*}$
C11	$0.77059(6)$	$0.20498(11)$	$0.51544(5)$	$0.05039(16)$
C1	$0.7901(2)$	$0.5395(3)$	$1.1684(2)$	$0.0384(4)$
N1	$0.8345(2)$	$0.5589(3)$	$1.33479(17)$	$0.0417(4)$
H1A	0.7624	0.6418	1.3617	0.062^{*}
H1B	0.9505	0.5923	1.3660	0.062^{*}
H1C	0.8174	0.4543	1.3774	0.062^{*}
C6	$0.9259(3)$	$0.5724(3)$	$1.0904(2)$	$0.0431(4)$
H6	1.0405	0.6101	1.1431	0.052^{*}
C2	$0.6147(2)$	$0.4859(3)$	$1.0962(2)$	$0.0427(4)$
C5	$0.8914(3)$	$0.5491(3)$	$0.9335(3)$	$0.0487(5)$
C3	$0.5844(3)$	$0.4628(4)$	$0.9399(2)$	$0.0541(5)$
H3	0.4698	0.4248	0.8873	0.065^{*}
C7	$0.4674(3)$	$0.4531(4)$	$1.1817(3)$	$0.0560(6)$
H7A	0.5086	0.3654	1.2599	0.084^{*}

H7B	0.3597	0.4097	1.1128	0.084^{*}
H7C	0.4399	0.5634	1.2271	0.084^{*}
C4	$0.7171(3)$	$0.4937(4)$	$0.8597(3)$	$0.0551(6)$
H4	0.6902	0.4773	0.7548	0.066^{*}
O1	$0.3659(3)$	$0.3043(4)$	$0.5526(3)$	$0.0783(6)$
C8	$1.0363(4)$	$0.5817(4)$	$0.8458(3)$	$0.0682(7)$
H8A	1.1339	0.6502	0.9071	0.102^{*}
H8B	0.9850	0.6472	0.7546	0.102^{*}
H8C	1.0828	0.4687	0.8197	0.102^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0441(2)$	$0.0462(2)$	$0.0622(3)$	$0.0054(3)$	$0.01468(18)$	$0.0086(3)$
C1	$0.0394(9)$	$0.0301(8)$	$0.0461(9)$	$-0.0005(7)$	$0.0105(7)$	$-0.0040(7)$
N1	$0.0388(7)$	$0.0414(8)$	$0.0458(8)$	$-0.0036(7)$	$0.0115(6)$	$-0.0009(7)$
C6	$0.0421(9)$	$0.0341(9)$	$0.0555(11)$	$-0.0039(8)$	$0.0157(8)$	$-0.0023(9)$
C2	$0.0378(8)$	$0.0371(9)$	$0.0541(11)$	$-0.0006(8)$	$0.0120(8)$	$-0.0042(9)$
C5	$0.0574(11)$	$0.0372(9)$	$0.0567(11)$	$-0.0024(9)$	$0.0237(9)$	$-0.0033(10)$
C3	$0.0486(11)$	$0.0568(14)$	$0.0545(12)$	$-0.0063(11)$	$0.0064(9)$	$-0.0123(11)$
C7	$0.0400(10)$	$0.0655(16)$	$0.0649(14)$	$-0.0104(11)$	$0.0169(9)$	$-0.0068(12)$
C4	$0.0658(13)$	$0.0554(13)$	$0.0450(11)$	$-0.0011(12)$	$0.0143(9)$	$-0.0082(10)$
O1	$0.0586(11)$	$0.0618(13)$	$0.1229(18)$	$0.0097(10)$	$0.0381(11)$	$0.0362(12)$
C8	$0.0852(18)$	$0.0626(17)$	$0.0694(15)$	$-0.0123(15)$	$0.0439(14)$	$-0.0039(14)$

Geometric parameters (\AA, ${ }^{\circ}$)

C1-C6	1.383 (3)
C1-C2	1.393 (3)
C1-N1	1.470 (2)
N1-H1A	0.8900
N1-H1B	0.8900
N1-H1C	0.8900
C6-C5	1.391 (3)
C6-H6	0.9300
C2-C3	1.388 (3)
C2-C7	1.503 (3)
C5-C4	1.393 (3)
C5-C8	1.501 (3)
C6- $\mathrm{C} 1-\mathrm{C} 2$	122.80 (19)
C6- $\mathrm{C} 1-\mathrm{N} 1$	118.46 (17)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	118.73 (18)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
C1-N1-H1B	109.5
H1A-N1-H1B	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	109.5
H1A-N1-H1C	109.5
H1B-N1-H1C	109.5

$\mathrm{C} 3-\mathrm{C} 4$	$1.376(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
C7-H7A	0.9600
C7-H7B	0.9600
C7-H7C	0.9600
C4-H4	0.9300
O1-H30	$0.80(4)$
O1-H31	$0.78(4)$
C8-H8A	0.9600
C8-H8B	0.9600
C8-H8C	0.9600
C4-C3-H3	118.7
C2-C3-H3	118.7
C2-C7-H7A	109.5
C2-C7-H7B	109.5
H7A-C7-H7B	109.5
C2-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5
C3-C4-C5	$120.8(2)$

sup-4

supplementary materials

$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.3(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.6
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	119.9	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.6
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.9	$\mathrm{H} 30-\mathrm{O} 1-\mathrm{H} 31$	$110(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$115.72(19)$	$\mathrm{C} 5-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$121.90(19)$	$\mathrm{C} 5-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$122.38(19)$	$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.5
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$117.7(2)$	$\mathrm{C} 5-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.5
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8$	$121.6(2)$	$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8$	$120.7(2)$	$\mathrm{H} 8 \mathrm{~B}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$122.7(2)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8$	
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-1.2(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.4(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$177.61(19)$	$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.2(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.5(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$179.4(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-177.3(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$0.6(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$-179.1(2)$	$\mathrm{C} 8-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$-0.2(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$2.1(3)$		$179.7(3)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$0.5(3)$		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 30 \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	$0.81(4)$	$2.37(4)$	$3.168(3)$	$171(4)$
$\mathrm{O} 1 — \mathrm{H} 31 \cdots \mathrm{Cl} 1$	$0.78(4)$	$2.44(4)$	$3.219(3)$	$174(5)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.89	1.82	$2.705(4)$	171
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.89	2.29	$3.167(2)$	169
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{C} \cdots \mathrm{Cl} 1^{\text {iv }}$	0.89	2.30	$3.189(3)$	173

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1$; (ii) $-x+1, y+1 / 2,-z+2$; (iii) $-x+2, y+1 / 2,-z+2$; (iv) $x, y, z+1$.

Fig. 1

Fig. 2

